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General relativistic gravitational field effects on superfluid 
phase interference devices 

A Widomt, G Megaloudist, J E Saccot and T D Clark$ 
t Physics Department, Northeastern University, Boston, Massachusetts 021 15, USA 
$ Physics Laboratory, University of Sussex, Falmer, Brighton, England 

Received 29 September 1980 

Abstract. In some recent experiments, it has been established that the Newtonian gravita- 
tional potential can influence the phase interference between alternative virtual paths taken 
by a quantum test particle. Here, we consider theoretically the influence of general 
relativistic fields on the phase interference of superfluid flows. 

1. Introduction 

In the Feynman path integral formulation of quantum mechanics, the amplitude for a 
test particle to travel along a path P is related to the action for the path by 

Amp(P) = exp(i/h)S(P). (1) 

Alternatively, the phase interference in the amplitudes for two paths of a quantum test 
particle, which have the same initial and final points, is given by 

h w l ,  p2)  = wI) -w2). (2) 

Recent experimental evidence (Werner et a1 1975) has been obtained that the 
Newtonian gravitational potential can contribute to t9 for a non-relativistic quantum 
test particle. 

Equation (2) will have a particularly interesting form when the physical external 
field acting on the test particle 1s derked from a gduge field, such a5 the electromagnetic 
field and tlnc gcnci-a1 reht;-h :$.I k gk svitational field. Here, the phase interference 
function is (in priticjple) a rnL-?>urabic quantity, and will ~ O L  depend on the particular 
choice of gauge. This becoinas possible because the physical external field acts on the 
quantum test particle from a distance which yields a generalised Bohm-Aharonov 
(Aharonov and Bohm 1959) effect. 

In a superfluid system, the phase interference 8 can appear on the macroscopic scale 
of superfluid flows. The gauge field contributions to 8 will remain intact, if the 
superfluid order parameter transforms as a single test particle wavefunction under 
changes in the gauge fields. For example, the electromagnetic flux contribution to the 
phase of the Josephson current (Feynman 1965) in a superconducting quantum 
interference device appears because the Landau-Ginzburg order parameter transforms 
(i1nd.x electromagnetic gauge change) as a spinless boson wavefunction of charge 
q = 2 e .  

0305-4470/81/040841+ 05$01.50 @ 1981 The Institute of Physics 84 1 



842 A Widom, G Megaloudis, J E Sacco and T D Clark 

The purpose of this work is to discuss the influence of the general relativistic 
gravitational field on the superfluid phase. As an explicit example, we choose to 
compute the influence of neighbouring rotating masses on the phase interference in a 
quantum superfluid device due to general relativistic gravitational effects. Although the 
engineering problems in detecting general relativistic effects via the superfluid phase 
are formidable, the theoretical predictions are clear and worthy of note. 

2. The electromagnetic field 

For the purpose of comparison, let us first briefly review the physical principles by which 
electromagnetic flux is detected in a superconducting quantum interference device 
(SQUID). The gauge field is given by the differential form 

A = A, dx,, 
I* 

(3)  

which yields a contribution to the path action of a quantum test particle of charge q, 

AS(P) = ( d c )  5 A. 
P 

The phase interference implied by equations (2) and (4) is given by 

In terms of the physical electromagnetic field differential form 

F = d A = $ ~ F , , ( d x ” r \ d x ” ) ,  
I”y 

F,,, = a,A, -a&,, 

(4) 

the integral on the right-hand side of equation ( 5 )  can be written as the electromagnetic 
flux through a surface bounded by the closed path, 

a = f  A = /  JF. 

Hence 
A 0  = (q@/hc) ,  

which is the Bohm-Aharonov effect, from a relativistic viewpoint. 
In a superconducting ring with a Josephson weak link, the phase interference is from 

clockwise and counter-clockwise electron pair paths (Widom and Clark 1980) (q  = 2e) 
so that the total ring current (summed for both orientations) is 

I = (1~/2i)(e’“ - e-iAo), (10) 

I = I o  sin(2vO/ao),  (11) 

which is the Josephson law relating current and electromagnetic flux; i.e. 

where 

tional field. 

= ( v h c / e )  is the flux quantum. 
Let us now consider the analogous arguments for the general relativistic gravita- 
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3. Gravitational fields 

The path action for a test particle of mass m moving in a gravitational field (Landau and 
Lifshitz 1975a) is given by 

S ( P )  = -mc du, 

where the interval is given by the space-time metric 

-du2 = 1 g,, dx, dx ”. 
,U 

In terms of the path velocity 

v’ = c(dx,/du), (14) 

the action is determined by 

v = x, U ,  dx,. , 
Equations (2) and (15) imply a phase interference function 

The role of the flux quantum (determined by the test particle charge) 

a0 = (277hc/q), (18) 

in the electrodynamic case, is here played by the Compton wavelength (determined by 
the test particle mass), 

A. = (27rh/mc), (19) 

i.e. the phase interference function reads 

Contributions to the phase interference function in equation (20) can arise even 
when the gravitational field vanishes. Hence, the gravitational field contribution to 
equation (20) must be extracted with care. As an example of phase interference in flat 
space-time, consider a superfluid constrained inside a ring of radius R rotating about 
the ring axis of symmetry with angular velocity R. In a cylindrical rotating frame 
coordinate system the flat space-time metric reads 

d u 2  = ( c 2  - R2p2) dt2 - (d t2  + dp2 + p 2  dq2)  - 2Rp2 d q  dt .  (21) 

Presuming that the test particle velocity I D / < <  c and the tangential ring (rotational) 
velocity (0 x R )  << c, the phase interference between clockwise and counter-clockwise 
paths implied by equations (20) and (21) is the well known rotating superfluid quantum 
interference device result 

A0 = (277/Ao)(277R2R/c). (22) 
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For a charged superfluid, rotational velocities have an equivalent magnetic field 
strength (q  = 2e), 

from the viewpoint of phase interference. 
Now let us consider a case which is an actual general relativistic gravitational field 

effect. Consider a sphere with a large mass M, centre at the origin, and having a 
rotational angular momentum L about an axis through the sphere centre. Let the 
superfluid quantum interference device be placed in a spatial neighbourhood of the 
rotating sphere. The lowest-order deviations from flat space-time due to the rotating 
sphere in the region of the phase detecting device can be written as (Landau and Lifshitz 
1975b) 

d u 2  = (1 + 2 p / c 2 + .  . .)(c dt - a - d r  +. . .)’- /drI2+. . . , (24) 

cp = (GM/r) (25 )  

where 

is the Newtonian potential, 

a = (2G/c3r3)r AL.  (26) 

The Coriolis vector 

SZ = (c/2) curl a (27) 

can be detected as in equation (23). Specifically, the phase interference in a closed 
superfluid detector path due to the neighbouring rotation in the sphere is given by 

where A. is the Compton wavelength of the detector test particle (e.g. an electron pair). 
In terms of the Planck length A, where 

A2 = (hG/c3), (29) 

and the macroscopic angular momentum in quantum units (Llh) ,  equation (28) reads 

A0 = (4rA2/Ao)(L/h) * (dr A r/r3), (30) 

In a superconducting quantum interference device magnetometer shielded (by other 
superconductors) from magnetic fields, the neighbouring rotating mass will produce (in 
the detector) a Josephson current 

I = Io sin(A0), 

where A0 is given in equation (30). 
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4. Conclusion 

For a general metric, the phase interference function can be computed from the general 
relativistic version of the London (1960) fluxoid 

ti8 = f 1 [mu, + ( q / c ) A , ]  dx,. 
CI 

This evidently has the form 

6 = 277[(1/A0) + (@/@cJI, 
where @ is the electromagnetic field flux contribution, and the lengthscale 1, 

will be influenced by spaee-time geometry even for the @ = 0 case. 
In the voltage-current characteristics of a superconducting quantum interference 

device, the Faraday law voltage V = -&/c depends only on the electromagnetic flux 
contribution to equation (33), while the Josephson current I = Io sin 8 depends on the 
total phase interference function. 
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